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Abstract—The paper presents a method of continuous analysis for predicting the local delamination
buckling load of the face sheet of sandwich beams. The discontinuous system of a face sheet
delaminated from the elastic core is treated as a continuous system of the face sheet without debond
but subjected to an added force system that causes the net interfacial tractions at the separated
region to vanish. The effect of transverse normal and shear resistance from the core is accounted
for. The procedure allowing direct determination of the buckling load by considering the entire
region without separating it into regions with and without delaminations is effective for this class
of problems. Fourier series in conjunction with the Stokes transformation is used which provides a
unified solution for problems with different end conditions. The concept of analysis can foreseeably
be extended to two-dimensional plate problems with delamination regions of arbitrary shapes. Some
numerical results are presented to illustrate the applicability of the analysis procedure and effects of
various parameters to the buckling load. Copyright © 1996 Elsevier Science Ltd.

INTRODUCTION

Debonding of face sheets from the core is one of the most common failure modes in
sandwich structures. Delaminations may occur due to various reasons such as manu-
facturing imperfections, or impact of foreign objects. Under compression load, the delami-
nated structure may buckle. Delaminated composite sandwich beams have gained renewed
interest though sandwich construction has been used in various structural applications for
many years due to its light weight and high bending rigidity, etc. For composite sandwiches,
the interface between the face and core may be weaker than those in layered composite
laminates. Generally speaking, the delaminated composite sandwich beams referred only
to the sandwich beams for which debonds exist in the interface between the face and core.
Under bending, one of the face sheets of the sandwich beam is under compression and the
other one is under tension. If there is a debond, local buckling of the face sheet may occur.
Since Chai et al. (1981) established an analytic one-dimensional model for the analysis of
beam-plates delamination buckling, the delamination buckling of a one-dimensional beam-
plate has been studied by several researchers, such as Simitses ef al. (1985), Yin et a/. (1986),
Kardomateas and Schmueser (1988). All of these studies considered that the two parts at
the delaminated region are completely detached from each other. Although there are studies
dealing with the buckling of composite sandwich beams, such as the works of Rao et al.
(1985, 1986), Mingust et al. (1988), Frostig er al. (1992, 1993), most of the earlier inves-
tigations do not involve delamination. The analysis for the buckling of delaminated sand-
wich beams has been made by some authors in recent years. Somer et al. (1991) developed
a theoretical model based on the earlier work for Chai er al. (1981) to study the local
buckling of delaminated sandwich beams, and Frostig (1992) described the behavior of a
general sandwich beam with a delamination at one of the skin-core interfaces for stress
analysis. Hwu er al. (1992) developed a one-dimensional model to analyze the overall
buckling of the delaminated sandwich beams. The present study presents a continuous
analysis procedure for determining the local buckling load for the face sheet debonded
from the core. The general concept of the continuous analysis for discontinuous structures
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Fig. 1. Buckled face sheet.

was presented by Wang (1993). The core is considered to provide transverse normal as well
as shear resistance to the face sheet in the bonded region. While the transverse displacement
at both ends of the face sheet is considered to be zero in this study for the convenience of
discussion, rotational restraints are included. The analysis is, therefore, quite general and
may be extended to two-dimensional problems for delaminated plates having various
boundary conditions.

MODEL

A sandwich beam of unit width with orthotropic composite face sheets is considered
in the study. The model considers that a through-the-width debond exists at the interface
between the face and the core. Only the transverse stiffness normal to the face sheets and
transverse shear stiffness are considered in the core. As a result, the face sheets take all of
the in-plane loading, whereas the core takes only transverse shear and normal forces as
indicated in Fig. 1. We consider a delaminated sandwich beam which has an interface
debond occurring between the upper face and the core. When the beam is under pure
bending, the upper face takes a compressive axial load and the lower face takes a tensile
axial load. Since we are only interested in the local delamination buckling in the study, the
buckled configuration of the upper half of the sandwich beam, as shown in Fig. 1, is
considered. In the model illustrated in Fig. 1, the foundation is modeled by parallel linear
and shear springs distributed along the bonded interface between the face sheet and the
core. They are characterized by the distributions of shear force V(x) and normal force g(x)
in force per unit area of the unit width beam. Figure 1a shows the actual buckled face sheet,
and Fig. 1b shows the continuous model which is mechanically equipollent to the actual
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structure. Following the idea of the continuous analysis discussed by Wang (1993), we
consider that any point at the interface of the debonded region for the continuous model
as shown in Fig. 1b is also attached to the core but with added fictitious normal and shear
forces g; and V; per unit width concentrated at the jth point (x = x;) in the delaminated
region so that the net traction at the point vanishes during buckling. Accordingly, we divide
the debonded region into » divisions and require that the conditions ¢; = kp(x,)Ax; and
V, = V(x))Ax; be satisfied over each division of Ax, length in the debonded region where &,
is the transverse normal stiffness of the core. ¥(x) is the interface shear force which is equal
to G .7, of the core where G.. and 7,. are, respectively, the shear modulus and shear strain
of the core which are considered to be uniform through the thickness of the core. The face
sheet is considered to be supported with zero displacement for the convenience of discussion
but with rotational restraint in general at each end as shown in Fig. 1.

Governing equations
The equilibrium equations governing the bifurcation buckling of a unit width face
sheet attached to the core having transverse normal as well as shear resistance are

dN LA
— —V+ Y Vidx—x) =0 (H
dx k=1

d*M d*w t\dV n t "
—-P +{z|5—=— O(x—x)+qgx)+ | V.o'(x—x 2
dx? dx2 (2) dx Ag] 410( )+ q(x) (2)|;<Z| «0'( k):I (2)

where P is the buckling load and ¢ is the thickness ; N is the axial force and M is the bending
moment in the face sheet, g and J are transverse normal and shear resistance from the core,
respectively, during buckling of the unit width beam-plate; x is the coordinate in the
longitudinal direction, and é(x —x,) is the Dirac delta function.

For symmetrically stacked orthotropic laminates for the face sheets, the constitutive
equations and strain-displacement relations for the face sheet are

N=4,¢, M=Dx, (3)
and

du d*w
Ky= (4)

&y =7, N -
dx dx?

where 4,, and D,, are extensional and flexural stiffnesses, respectively, ¢, is the extensional
strain, k. is the change of curvature and u is the longitudinal displacement. By substituting
eqns (3) and (4) into eqns (1) and (2), we obtain

d*u

-

Al]

—V==3 Vid(x—x,) (5
k=1

dx* dx

N

d*w d*w 14 " n
D, =2 +P - _(;> dx +g(x) = Z ‘]ké(v’f”xk)“(zi)lz Z Vké/(x_xk):l (6)
X k=1 k=1

The transverse resistance from the core of the sandwich beam is taken in the usual form
q(x) = kw (7

in which
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kf - %E{.A(,ﬂ (8)

where £, is the Young’s modulus of the core in the transverse z-direction, 4, is the effective
contact area of, e.g.. the honeycomb, core per unit area of the face sheet, and ¢ is the depth
of the core. The tangential resistance from the core of the sandwich beam is taken to be

Vix) = G..y,. 9

where G .. is the transverse shear modulus of the core, and the shear strain in the core is

tdw\ //c

By substituting eqns (7)—(10) into eqns (5) and (6), we arrive at the following governing
differential equations:

d*u  2G.- £\ dw "
— — = — LN —X, 1
Hd.\‘z p [M+<2) dx:| 12:1 Vid(x—xy) (10
d*w d&*w  [1G \[du N\ d*w i AN
Dy— 4P — () — 4z —|+kw= Ox—x)—| = V.o’ (x—x,
D dy’ < ¢ >|:d.\‘ (2) d.\”z} M AZ,I 4i0( %) <2>kzl k 9]

(12)

If the shear stiffness of the core is negligible, eqns (11) and (12) for the buckling of the face
sheet per unit width are reduced to

d4 N dl , H
Dy, 2 +P—~lj Fhw =Y qd(x—x) (13)
dx* dx? k=1

which is the well known equation for beam-columns on the Winkler foundation.

Boundury conditions
If both ends of the face sheet are simply supported, the boundary conditions are

atx=0: w0)=w"(0)=u(0)=0 (14)
aty=/0 wl)y=w'{)=u{)=0 (15)

where primes denote differentiations with respect to x, and / is the total length of the face
sheet. For the general case of hinge support with rotational restraint at both ends, the
boundary conditions are

atx=0: w(0)=u(0)=0, and D, ,w"(0) = K,nw'(0) (16)
atx =/ w(l)=u'()=0. and D, w’(0) = =K w'(l) (17)

where K, and K, are rotational spring constants at x = 0 and /, respectively. If the shear
stiffness of the core is negligible, the boundary conditions without the involvement of « in
eqns (14) and (17) are used with the governing differential eqn (13).
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Analytical solutions

For general boundary conditions at both ends of the face sheet, Fourier series in
conjunction with the Stokes transformation discussed by Chuang and Wang (1991). and
Chung (1981), along with various series properties given by Bromwich (1965) is used. The
displacements are represented by the following Fourier series

2

U=u,+ Z U, COS %, X (18)

=1

ps

)

n=1

w,sing,x 0<x</

w(x) = (19)
B, x=0
B, x=1
where %, = mn/l. Their derivatives are
d * ‘
L/l = - z AUy sin &y X (20)
dX m=1
dw(x B,—B *
d.(»():(\l ; ‘))+”;1\P,,,cosocmx 0<x<! (21
with
‘I‘m = % [Bl ( - 1 )m - B()] + Ay Wi
- z AW, SiN e, x 0 < x </
d?w(x) m=1
e (22)
dx* By x=0
B x=1

d'w  (Bi-B)) {2
dx) [ m:l[

= + Z 7[B’I'(A 1)'”433 ] _aﬁl ‘I',”}COS A X 0 Sx < [ (23)

d*w 2 2 , 5 .
8—4 = - z %y 7 [Bl ( - l)m — Do ] Uy ".""m Sin &, X 0<x< [ (24)
X m=1

The Dirac delta function and its derivative are also represented by Fourier cosine series
and/or sine series,

S(x—x) = Y D, sina,x (25)

m=1

. C ’ )
d(x—x;) = 70 + 3 C,cos0,x (26)
m=1
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£

S (x—x0) = — Y %,C,, cO8%,x, sina,x
m=1
where
Dm TSln <‘XmX/
2 “ 2 .
Cy=7 and C, =7jcosa,x,

27

Since we consider that the face sheet has zero transverse displacement at both ends for
the convenience of discussion, hence, B, = B, = 0. By substituting eqns (18)—(27) into eqns

(11) and (12), we obtain

n ][7

_ N -k
Uy =

0T =2 G

”
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i i
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P e D
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(28)

(29)

(30)

If both ends of the face sheet are simply supported, then By = B} = 0. If the shear stiffness

of the core is negligible, eqns (28), (29) and (30) are reduced to

2 (1Y , 28
w, === | [(=1)"%,B] =, By ]+ — 3 g:sino,x;

/~ml T mi=1

in which

n

: Y CAN
I =m+ K- | ———m"

and the Euler buckling load per unit width of the beam-plate is

(31
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D, n?

_1_2

PEu[cr =
By solving eqns (29) and (30) for the gencral case, we obtain

Uy = Z Amk Vk + Z Bmqu—lr(* l)m(xmam /I,+O‘mmell'; (32)
k=1 k=1

Wi = Z CmA Vk + Z Dmqu + (_ l)mixmcmBll/ +1mdeg (33)
k=1 k=1

where

*
A = "5(2022 COS &, Xy, — 5 fmm cOs &,

D*
Bmk = /5( bzal 2 S Ocmxk)

D* _
Cor = 7 (a, fmmcos &, x, —2a,, cOS %, X;)

%
D, = 3(2an Sin 9., Xy)

3
pe =
DHTC
28
y = — "‘D—40[2
™
bm = Ay,
20}
Cn = E‘Iall
dm = —Cy

D =a, a5, —ay,»a,,

Now, we have the general solutions for ¥ and w from which we obtain ¢(x) from eqn
(7) and V(x) from egn (9). In the debonded region, we require the following conditions to
be satisfied at x = x;:

Vixp)Ax =V, (34)

q(x)Ax = g; (35)

where j = 1,2, 3,...n, and n is the number of divisions associated with n sets of fictitiously
added force components in the debonded region. The length of each division, Ax, is
considered to be constant in this study. If both ends of the face sheet are simply supported,
eqns (32) and (33) with B} = Bjj = 0 satisfying all the boundary conditions become the
general solutions of the problem. As a result, conditions (34) and (35) are sufficient to
establish the eigenvalue problem for determining the delamination buckling load. If either
one or both ends are rotationally restrained, the third condition given in eqns (16) andjor
(17) must be considered additionally. For the general case that both ends are rotationally
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restrained, the two conditions D,, B} = — K,w’(/) and D,, B; = Kyw'(0) together with con-
ditions (34) and (35) result in the following equations after eqns (7), (9), (19), (21), (32),

and (33) are used where applicable:
(XYY + [BR g} + {Ri 1} B +{Rji2} By = 0
[CRHV) + D5 a) +{Sine } BT+ {Sjni2} B =0
(¥ Ve + Bl { g H{Rucian 1 BT + {Ry1n2}BG =0
[Cro Vi + DX e} +{Sus i J BT+ {Sus a2} BG =0
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(36)

(37

(38)

(39
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Rn+|,n~2 = Z (_ l)mymdm
m=1
*
2
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Equations (36)—(39) may be written in the following matrix form:
[4]{Y} =0 (40)

where

{Y} = [{Vk} {Qk}BI{ 3]T-

The delamination buckling load may be determined by requiring the determinant of the
coefficient matrix of eqn (40) to vanish, while eqns (36)—(39) allow one to solve for the
general case of delamination buckling load of the face sheet accounting for transverse
normal and shear resistance of the core and the rotational restraints at both ends. However,
if certain effects do not exist, it is preferable to use reduced equations instead of assigning
very small or large values for related restraining parameters. The following identifies the
special cases:

1. If the face sheet is simply supported at x = 0, we should delete terms involving B
and use eqns (36)—(38).

2. If the face sheet is simply supported at x = /, we should delete terms involving B
and use eqns (36), (37), and (39).

3. If both ends of the face sheet are simply supported, we should delete terms involving
B and BY and use eqns (36) and (37).

4. If the face sheet is fixed at x = 0 andfor x =/, D,,/K, and/or D /K, in S,, 4>
and/or R, ,,., should be taken as zeros respectively.

5. If the transverse shear stiffness in the core is negligible, eqns (36) and (37) are
reduced to a single set of equations as follows:

[Cil{g,s —SFB;+RFBT =0 (41)

Equations (38) and (39) are reduced to

=Y S¥qi+b1 By —b,B =0 (42)
=1

i

>, R¥q,—by Bi+b,,B) =0 (43)
i=1
where
. _ ! 5+ i . .
i T 2KAX ij e /A'm sSin &, X; S1n %X

o m
S¥=D* Y —sina,x,

m=1tm
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. o
Rf=D* Y (—1)y" = sina,x
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Equations (41)—(43) may be written in the following matrix form:

(A1{Y} =0 (44

where {¥} = [¢, By B{]". and the elements of the matrix [A] can be identified from eqns
(41)—(43). The delamination buckling load can be determined by setting the determinant
of the coefficient matrix of eqn (44) to zero. If there is no debond between the face sheet
and the core, the buckling determinant reduces to

b11b:2_b|2b2| =0 (45)

If the face sheet is entirely delaminated from the core, the buckling load can be determined
from eqn (45) by taking K = 0. If both ends of the face sheet are also simply supported,
the buckling load reduces to the Euler’s load by setting 4,, = 0 with m = 1 and K = 0.

NUMERICAL RESULTS

Buckling loads without effect of shear stiffness of the core

A few degenerated cases of beam-plates having zero and full delaminations where
exact solutions are available are considered for demonstrating the accuracy of the present
method of continuous analysis using very small and large delamination lengths, respectively.
They also serve the purpose of partially checking the derivation and computer programs.
For all these cases. a beam of unit width having / = 31.4 inches and D, = 100 lb-in are
used. The effect of the rotational restraints at end supports is also examined using the
simplified model where the shear stiffness of the core is neglected for a beam-plate having
various delamination lengths. Computer programs for a face sheet with both ends simply
supported using eqn (41) with By and B} omitted, and hinge supports with rotational
restraints using eqn (44) are written separately for comparison purposes.

For the case where the shear resistance of the core is neglected, the problem becomes
a beam on the elastic Winkler foundation. The buckling load of 200-1b is given in the
example on page 36 of the book by Brush and Almroth (1975) for a simply supported beam
on a continuous foundation with k, = 100 lb/in’. The converged result obtained from the
present continuous analysis by considering a very small central debond length of « = 0.003/
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Fig. 2. Effect of end rotational restraint for &, = 100 Ib/in* for a unit width beam having a central
debond.

using the computer program for both ends simply supported face sheet of unit width is
found to be 199.99-1b. For the same beam on a very soft foundation of k, = 0.01 Ib/in", the
buckling load for a face sheet having ¢ = 0.97/ central debond length is found to be 1.001-
b which coincides with the Euler’s buckling load for the pin ended beam-plate of unit
width.

To give some indications of the effectiveness of the Stokes transformation, the buckling
load obtained by using the program for hinged beams with rotational restraints, the buckling
load for k, = 0.01 Ib/in’ with very small rotational spring constants of K, = K, = 1.0 Ib-
in is found to be 1.001 1b per unit plate width. The result coincides with Euler’s load, and
is also consistent with the result given earlier using the computer program for simply
supported face sheet. For K, = 1000 Ib-in and K; = 0.01 Ib-in, the present result for the
buckling load is found to be 2.044 1b per unit plate width which coincides with the well-
known buckling load of a clamped-simply supported column without foundation. For
K, = K, = 1000 lb-in, the present result is found to be 4.003 lb per unit plate width
which coincides with the well known buckling load of a clamped-clamped column without
foundation. For illustrating the applicability of the continuous analysis procedure for
discontinuous structures having delaminations in conjunction with Stokes transformation
to account for end rotational restraints in the Fourier series representation of deflection,
buckling loads of the face sheet for k, = 100 Ib/in* with various combinations of K; and X,
on the end conditions corresponding to various delamination lengths are computed without
difficulty. These results are shown in Fig. 2. It is seen from Fig. 2 that the effect of the end
restraining conditions for this particular case is negligible for delamination lengths varying
from 0 to over 90 percent of the total length. Hence, the rotational restraints are not
considered in the numerical examples for the general case presented in the next section.
Numerical results calculated by using the present computer program for beam-plates having
various delamination lengths are also used in the next section to support the program for
general case where both the normal and shear stiffness of the core are accounted for.

Buckling loads with effects of normal and shear stiffnesses of the core

For partially checking the derivation and computer program for the general solution
for determining the buckling load accounting for the transverse normal and shear resistance
from the core, a both ends simply supported face sheet having / = 31 4 inches and D, = 100
Ib-in without the shear resistance from the core is first considered. The results obtained by
using the program based on eqn (41) without Bj and B established for the case considered
in the last section are compared to the results by using the program written for the general



286 Shou-Hsiung Cheng er al.

1.0
0.9 svees k, =100.0,G,, =0.0
0.8 — k, = 100.0,No shear effect
0.7 (k, in lb/in.)
V. 06
S 7
= 0.5
Ay m
0.4 —
0.3 -
0.2 —
0.1 —
KL S B S A S e S S A N SRR S
06 01 02 03 04 05 06 07 08 09 1.0
afl

Fig. 3. Checking computational and analysis procedures.

case corresponding to the eqns (36) and (37) for case 3 which are reduced from eqn (40).
Close agreements on the buckling load corresponding to various delamination lengths for
k;= 100 Ib/in" are noted in Fig. 3 for results obtained by using these two separately written
computer programs. All converged solutions computed using these two computer programs
are essentially identical except for a = 0.2/ and 0.3/ where slight discrepancies are shown in
Fig. 3. For the line corresponding to &, = 100 and G,. = 0.0 in Fig. 3, eqns (36) and (37)
are used. We arrive at a converged solution requiring 60 divisions at the debonded region
which corresponds to a 120 by 120 buckling determinant for ¢ = 0.2/. On the other hand,
eqn (41) with B7 = B} = 01is used for the line corresponding to &, = 100 and no shear effect
for which 60 divisions at the debonded region corresponding to a 60 by 60 buckling
determinant for the converged solution for ¢ = 0.2/. For a = 3/, a 200 by 200 vs a 100 by
100 buckling determinants are used, respectively. Although these discrepancies are negli-
gible, using properly reduced equations for specific cases would not only reduce the com-
putational time but should also give more accurate results. In Fig. 3, P!, represents the
buckling load of the face sheet without debond and shear stiffness of the core. The rapid
rate of reduction in the load carrying capacity with the increase of delamination length is
consistent to the findings given by Somer (1991).

For the same face sheet used in the last case having a central delamination length of
a = 0.1/ with k,= 100 Ib/in*, the buckling load corresponding to various values of the
transverse shear to normal stiffness ratio of the core is shown in Fig. 4. The symbol s, for
2G jc¢ 1s used to represent the shear stiffness of the core. As expected, the buckling load
increases as the shear stiffness increases.

Results on the buckling load for the same face sheet used in the last case corresponding
to the core stiffnesses of k, = 100 1b/in® with s, = 10k, for various delamination length ratios
are compared to the s, = 0 case as shown in Fig. 5. From Fig. 5, it may be noted that the
effect of shear stiffness is significant for longer delamination length. For this case, the
buckling load for s, = 10k, has a 38.65 percent increase over the s, = 0 case when the face
sheet has a central debond of 70 percent. Based on the results shown in Fig. 4, the effect of
s, to the buckling load would be more pronounced for higher values of the shear stiffness.

CONCLUDING REMARKS

The main objective of the study is to explore the feasibility of using the concept of
continuous analysis for determining the buckling load of face sheets delaminated from the
core of sandwich beams. The analysis, treating such discontinuous structural components
as a continuous system without debonds but subjected to a fictitiously added force system
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that causes the net interfacial tractions at the separated regions to vanish, is simple,
systematic and effective. The formulation of the problem is general as both the transverse
normal as well as the shear stiffnesses of the core are accounted for. Some simple numerical
examples are presented for demonstrating the applicability and accuracy of the method of
continuous analysis and the use of the Stokes transformation. Numerical results obtained
on the basis of the present analysis compare well with existing degenerated cases which
provided partial checks and support of the present method of analysis. Fourier series in
conjunction with the Stokes transformation used in the analysis provides an effective unified
solution for the face sheets having different types of support conditions. In the usual
conventional structural analysis, the procedure for solving the problem would divide the
entire face sheet into segments with and without debonds. The buckling determinant is then
obtained by satisfying continuities in forces and displacements at junctions of adjacent
bonded and disbonded regions. The present analysis which deals with the entire region as
a whole is more direct than the conventional analysis. Furthermore, in anticipation of
extending the analysis to two-dimensional composite plate problems having delaminated
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regions of arbitrary shapes, the use of the conventional procedure would be very difficult if
not impossible while the use of the Fourier series solutions with Stokes transformation in
the present continuous analysis procedure does not foreseeably pose difficulties.
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